This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Structures and Modes of Reactions of Some Hexachlorocyclodiphosphazane With Some Bifunctional Reagents

E. H. M. Ibrahima

^a Department of Chemistry, Faculty of Science, Qatar University, Doha, Qatar

To cite this Article Ibrahim, E. H. M.(1989) 'Structures and Modes of Reactions of Some Hexachlorocyclodiphosphazane With Some Bifunctional Reagents', Phosphorus, Sulfur, and Silicon and the Related Elements, 41: 3, 419 - 431

To link to this Article: DOI: 10.1080/10426508908039732

URL: http://dx.doi.org/10.1080/10426508908039732

PLEASE SCROLL DOWN FOR ARTICLE

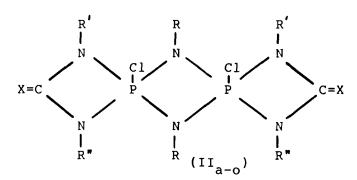
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STRUCTURES AND MODES OF REACTIONS OF SOME HEXACHLOROCYCLODIPHOSPHAZANE WITH SOME BIFUNCTIONAL REAGENTS

E.H.M. Ibrahim,
Department of Chemistry, Faculty of Science
Qatar University, Doha, Qatar.


Abstract Aminocyclodiphosph(v)azanes of the type (II-V) obtained from the interaction of hexachlorocyclodiphosphazanes (I) with some bifunctional reagents (such as phenylurea, diphenylurea, thiourea and its phenyl derivatives) in acetonitrile, have been discussed.

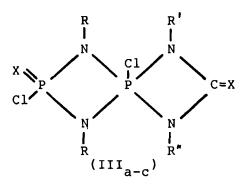
INTRODUCTION

The reactions of hexachlorocyclodiphosph(v)azanes with monofunctional nucleophiles have been investigated in great detail (Ibrahim, 1979; Shaw, 1980). Analogous reactions with bifunctional reagents have received much less attention. In the present work, seven different hexachlorocyclodiphosphazanes of the type (I_{a-g}) have been prepared by the methods of Chapman (Chapman, 1961) and Kirsanov (Kirsanov, 1963).

$$I_a$$
; $R = C_6H_5$ I_e ; $R = C_6H_4--CH_3-p$
 I_b ; $R = C_6H_4--Cl-o$ I_f ; $R = C_6H_4--OCH_3-o$
 I_c ; $R = C_6H_4--Cl-p$ I_g ; $R = C_6H_4--OCH_3-p$
 I_d ; $R = C_6H_4--CH_3-o$

reaction between halophosphazanes (I) and a bifunctional nucleophile in a non-polar such as benzene or diethylether is a slow reaction, which often yields side products rather substituted phosphorus compounds. However, when a solvent such as acetonitrile is used (Shaw et. al., 1977, 1981), the reaction is found to be rapid and the degree of substitution and the pattern of halogen replacement is sensitive to the steric characteristics of the nucleophile (Shaw, 1984). Phenylurea, diphenylurea, thiourea and its phenyl derivatives react with halophosphazanes $(I_{a-c,q})$ a cyclosubstitution at phosphorus. to give aminosubstituted cyclodiphosphazane derivatives (II_{a-0}) analyses compatible with the have following tricyclic structure:

No. of				
compound	R	R'	R*	Х
IIa	С ₆ ^Н 5	C ₆ H ₅	^С 6 ^Н 5	0
II _b	C ₆ H ₄ -Cl-p	C ₆ H ₅	С ₆ ^Н 5	0
II _c	$^{C}6^{H}4^{-CH}3^{-p}$	^C 6 ^H 5	с ₆ н ₅	0
II _d	$C_6^{H_4}$ -OCH $_3$ -p	^C 6 ^H 5	^C 6 ^H 5	0
II _e	^C 6 ^H 5	^C 6 ^H 5	^C 6 ^H 5	s
II _f	C ₆ H ₄ -C1-0	с ₆ н ₅	C6 ^H 5	s
ΙΙ _g	C ₆ H ₄ -C1-p	с ₆ н ₅	^C 6 ^H 5	S
II _h	$_{6}^{\mathrm{H}_{4}-\mathrm{CH}_{3}-\mathrm{p}}$	^C 6 ^H 5	C6 ^H 5	S
II _i	$^{\mathrm{C}}6^{\mathrm{H}}4^{\mathrm{-OCH}}3^{\mathrm{-p}}$	C 6 H 5	^C 6 ^H 5	S
ΙΙ	^C 6 ^H 5	Н	Н	s
ΙΙ _k	$^{\text{C}}6^{\text{H}}4^{-\text{CH}}3^{-\text{O}}$	Н	Н	S
II ₁	C ₆ H ₄ -C1-p	Н	Н	S
II _m	$^{\mathrm{C}}6^{\mathrm{H}}4^{\mathrm{-OCH}}3^{\mathrm{-p}}$	Н	Н	S
IIn	^C 6 ^H 5	Н	^C 6 ^H 5	s
IIo	C ₆ H ₄ -C1-o	Н	^С 6 ^Н 5	S


The structure of these compounds has been substantiated on the basis of their infrared and ultraviolet spectroscopic analysis. The fact that the expected band at 270-290 nm characteristic (Becke-Goehring, 1963) for electron delocalization within the four-membered ring of the dimeric structure, was observed in the spectra supports structure (II). The infrared spectra of compounds showed characteristic absorption bands, which are summarized in Table 1.

spectrometric measurements (II_a), (II_c), (II_d), (II₀) compounds (II_b) showed the following masses of the molecular ion (M^+) at m/e 734 (738), m/e 762 (766), m/e 794 (798), m/e 766 (770) and m/e 794 (798) respectively. peak $({ t M}^+)$ then loses molecular ion phenylisocyanate, (C6H5NCO) to give of molecules positive radical at m/e 496 (500). findings agree with the following experimental proposed fragmentation pathway:

No. of Compound	NH	C=O	Stre C=S	tching P=S	frequenci P-Cl	es in cm ⁻¹ P-N-H	P=O
IIa	-	1775	-	-	515	_	_
II _b	-	1775	-	-	515	-	-
IIc	-	1775	-	-	515	-	-
II	-	1780	-	-	515	-	_
II e	-	-	1130	-	515	-	_
II _f	-	-	1125	-	525	-	-
ΙΙg	-	-	1125	-	515	-	_
IIh	-	-	1125	-	515	-	-
II i	_	-	1130	-	500	-	-
ΙΪ́	3100	-	1075	-	500	2600	-
IIk	3100	-	1110	-	500	2550	-
II,	3100	-	1095	-	500	2600	-
II m	3100	-	1160	-	500	2550	-
IIn	3400	_	1170	-	500	2600	-
II	3400		1170	-	530	2600	-
IIIa	3200	1650	-	-	520	2600	1250
III	-	-	1115	610	510	-	-
IIIc	3100	-	1110	635	540	2600	_

It should be noted that the parent peak of some of these compounds does not appear in the spectra, presumably owing to the fact that these ions are relatively unstable. However, these peaks were detected by the application of the link-scan technique.

The interaction of hexachlorocyclodiphosphazanes $(I_{c,d,f})$ with phenylurea, diphenylurea and thiourea gave the substituted oxyaminocyclodiphosphazanes (III_{a-c}) , respectively (see Tables I-III).

No of Compound	R	R'	R*	Х
IIIa	C_6H_4 -Cl-p	Н	^C 6 ^H 5	0
III _b	$^{\rm C_{6}^{\rm H}_4^{-\rm CH}_3^{-o}}$	с ₆ н ₅	^C 6 ^H 5	s
IIIc	C ₆ H ₄ -OCH ₃ -o	Н	Н	s

The assignment of structure (III) was based on: elemental analyses, uv spectra(which demonstrated the presence of the four- membered ring), ir and 1 H nmr spectra (see Tables I-II).

 $\label{eq:thmoments} \begin{picture}(1)\label{thmoments} 1\\ 1$\\ H.n.m.r. Spectra compounds (III_{a-o}) and (III_{a-c}) \end{picture}$

No. of Compound	снз	Chemical shift OCH 3	fts in ppm. Aromatic	NH**
IIa	-	-	7.3	-
II _b	_	-	7.6	-
II _c	2.2	-	7.7	-
IId	-	3.5	6.9	-
II _e	- '	-	7.2	-
II _f	_	-	7.4	-
ΙΙg	-	-	7.3	-
ΙΙ _h	2.5	-	7.5	-
II,	. –	3.6	7.0	-
ΙΪ́j	-	-	7.2	9.5
IIk	2.0 -	-	7.2	8.0
II ₁	_	-	7.2	9.3
II m	-	3.7	7.0	7.8
II _m	-	-	7.2	6.8
II.	_	-	7.3	8.6
IIIa	_	-	7.2	7.6
III _b	2.2	_	7.3	-
IIIc	-	3,85	7.1	9.90

^{**} Disappeared on the addition of D_2O .

TABLE III

Analytical data of the Aminocyclodiphosphazane derivatives (II-V)

m.p. oc

238

190

Reactants

(8.0 g.; 0.015 mole) (6.64 g.; 0.03 mole)

(6.0 g.; 0.012 mole) (5.64 g.; 0.02 mole)

(5.17 g.; 0.01 mole) (4.57 g.; 0.02 mole)

(6.0 g.; 0.013 mole) (2.0 g.; 0.026 mole)

Urea and thiourea

diphenylthiourea

diphenylthiourea

thiourea

derivatives

Cyclodiphospha-

zane (I)

ο£

nd

П	I a	diphenylurea	190	white	43	$^{\text{C}}_{38}^{\text{H}}_{30}^{\text{N}}_{6}^{\text{P}}_{2}^{\text{O}}_{2}^{\text{Cl}}_{2}$	61.60	4.00		8
201	(6.0 g.; 0.013 mole)	(5.57 g.; 0.026 mole)					62.04	4.08	-	8
ľΥ	Ic	diphenylurea	226-228	yelow	55	C38H28N6P2O2C14	56.00	3.40	10.08	7
Inde	(8.0 g.; 0.015 mole)	(6.45 g.; 0.03 mole)					56.72	3.48	10.48	7
2	Ic	diphenylurea	230-231	white	30	C40H28N6P2O2C12	-	-	10.09	7
<i>y</i>	(6.0 g.; 0.012 mole)	(5.24 g.; 0.02 mole)					-	-	11.01	8
۲ د	I _a	diphenylurea	225-227	white	51	$^{\mathrm{C}}40^{\mathrm{H}}34^{\mathrm{N}}6^{\mathrm{P}}2^{\mathrm{O}}2^{\mathrm{C}1}2$	-	-	10.20	7
Η.	(6.0 g.; 0.01 mole)	(4.92 g.; 0.02 mole)					-	_	10.57	7
AC.	Ia	diphenylthiourea	217-218	white	8	$^{\text{C}}_{38}^{\text{H}}_{30}^{\text{N}}_{6}^{\text{P}}_{2}^{\text{S}}_{2}^{\text{Cl}}_{2}$	60.00	3.50	10.95	8
3	(6.0 g.; 0.013 mole)	(5.98 g.; 0.026 mole)					59.54	3.91	10.95	8
aat	I _b	diphenylthiourea	203		7	C38H28N6P2S2C14	55.00	3.50	9.90	6
m L	(8.0 g.; 0.015 mole)	(6.63 g.; 0.03 mole)	•				54.55	3.35	10.05	7
Dov	I _c	diphenylthiourea	237=238	White	7	$^{\mathrm{C}}_{38}^{\mathrm{H}}_{28}^{\mathrm{N}}_{6}^{\mathrm{P}}_{2}^{\mathrm{S}}_{2}^{\mathrm{Cl}}_{4}^{}$	-	-	-	6

white

yellow

217-219 White

Yield

Colour

Pormula

 $^{\mathrm{C}}40^{\mathrm{H}}34^{\mathrm{N}}6^{\mathrm{P}}2^{\mathrm{S}}2^{\mathrm{C}1}2$

16.5 C40H34N6P2O2S2C12

17.5 C14H14N6P2S2C12

Microanalysis Found/Cal

7

9.86 7

10.57 7

10.16 7

18.90 13

18.14 13 Continued..

f 3	React Cyclodiphospha- zane (I)	Urea and thiourea	m.p. °C	Colour	Yield %	Formula	Microan C%	alysis H%	Found/C
	I d	thiourea	165	yellow	15	C ₁₆ H ₁₈ N ₆ P ₂ S ₂ Cl ₂	38.80	3.50	- 1
	(5.0 g.: 0.01 mole)	(1.56 g.; 0.02 mole)					39.10	3.67	- 1
	I _c	thiourea	165	pale	14	$^{C}_{14}^{H}_{12}^{N}_{6}^{P}_{2}^{S}_{2}^{C1}_{4}$	35.70	2.00	- :
	(8.0 g.; 0.015 mole)	(2.31 g.; 0.03 mole)		yellow			36.44	2.60	-
	I q	thiourea	210	pale	9	$^{\mathrm{C}}_{16}^{\mathrm{H}}_{18}^{\mathrm{N}}_{6}^{\mathrm{P}}_{2}^{\mathrm{O}}_{2}^{\mathrm{S}}_{2}^{\mathrm{C1}}$	-	-	16.03
	(6.0 g.; 0.01 mole)	(1.76 g.; 0.02 mole)		yellow			-	-	16.06
	I _a	phenylthiourea	230	white	8	C26H22N6P2S2C12	-	~	-
	(6.0 g.; 0.013 mole)	(4.0 g.; 0.026 mole)					-	-	- 1
	I _b	phenylthiourea	170-173	white	32	C26H20N6P2S2Cl2	_	-	-
	(8.0 g.; 0.015 mole)	(4.62 g.; 0.03 mole)					-	-	-
	^I c	phenylurea	162-164	white	2.5	C19H14N4P2O2C14			-
	(8.0 g.; 0.015 mole)	(4.13 g.; 0.03 mole)				., .,	43.00	2.80	- :
	ď	diphenylthiourea	260-262	white	10	C27H24N4P2S2C12	42.70	2.62	10.29
	(8.0 g.; 0.015 mole)	(4.13 g.; 0.03 mole)					-	-	9.31
	I _f	thiourea	170	pale	14	C15H16N4P2O2S2C12	, -	-	
	(6.0 g.; 0.01 mole)	(1.76 g.; 0.02 mole)					-	-	- :
	I _b	diphenylurea	183=186	yellow	21	C25H19N4P2O2C15			9.00
	(8.0 g.; 0.015 mole)	(6.45 g.; 0.03 mole)		white			-	-	8.66
	Ic	thiourea	173-175	yellow	11.5	C16H18N6P2C14	-	-	14.90
	(6.0 g.; 0.012 mole)	(6.78 g.; 0.222 mole)			10 10 0 1 1	-	_	15.01

The reaction of (I_b) with diphenylurea and (I_e) with thiourea led to the formation of products for which structures (IV) and (V) were proposed respectively.

MECHANISTIC PROPOSAL:

Interaction of the nucleophilic reagent with hexachlorocyclodiphosphazane (I) may take one of the following courses, or even both. The first mechanism is one involving direct substitution of halogen atoms by a nucleophilic attack on phosphorus according to the following reaction scheme.

The second mechanism involves a chloride ion which ionizes from phosphorus, followed by nucleophilic attack.

The course of the reaction depends on the nature of the nucleophilic reagent, the type of substituents present (R), and also on the relative rate of both reactions. It is feasible that direct attack of the nucleophile is possible by both mechanisms. Both routes will lead eventually to the proposed

tricyclic and oxycyclic structures.

It is expected, however, that if the R group attached to the cyclodiphosphazane nitrogen is bulky and the R' or R" group derived from the nucleophilic reagent is an aromatic group, such an interaction will not be facile owing to steric factors and would lead to the formation of intermediate products.

EXPERIMENTAL

Microanalytical determinations were carried out microanalytical laboratory, Cairo University. Infrared spectra were recorded on a Unicom SP 1200 spectrophotometer (KBr technique). Ultraviolet spectra were recorded on a Unicom Sp 8000 ultra-H recording spectrophotometer. n.m.r. spectra were measured on a Varian EM-360L, 60 MHz spectrometer and mass spectrometric measurements were carried out using a Finnigan MAT 112S spectrometer by the direct inlet system.

Synthesis of aminocyclodiphosphazane derivatives (II-V):

GENERAL PROCEDURE

The solid bifunctional reagent (0.02 mole) was added in small portions to a well stirred solution of the hexachlorocyclodiphosphazane (I) (0.01 mole) ml acetonitrile during 1/2 hour. After the addition was complete, the reaction mixture was heated under reflux for three hours. The solid formed subsequently dissolved with the evolution gas. After the completion of the reaction (HCl gas ceased to evolve), the reaction mixture was filtered while hot and the solid obtained was washed several times with acetonitrile, diethyl ether and dried in vacuo to give the corresponding aminocyclodiphosphazane derivatives (II-V); the data obtained are listed in Table III.

REFERENCES

- A.R.Allcock, 1972, Structural investigation of phosphorus-nitrogen compounds, "Phosphorus-Nitrogen Compounds", Academic Press, New York, p. 436.
- M.Becke-Goehring, and B. Bopple, Z. Anorg. Chem. 322, 239 (1963).
- A.C.Chapman; N.L.Paddock and H.T.Searle, J. Chem. Soc., 1825, (1961)
- E.H.M.Ibrahime and N.E. Amine, Egypt J. Chem., 22, 4, 307-312 (1979).
- S.S.Krishnamorthy and R.A.Shaw , Inorg. Nucl. Chem. Lett., 13, 407,(1977).
- R.A.Shaw, Pure Appl. Chem., 52, 1083, (1980).
- R.A.shaw, and M. Woods , Inorg. Nucl. Chem. Letters., 17, 181,(1981).
- R.A.Shaw, and M.Woods ,J. Chem. Soc. Dalton. Trans., 840,(1980).
- R.A.Shaw, and M.Woods , J. Chem. Soc. Dalton Trans., 621,(1984).
- I.N. Zhumorova, and Kirsanov, Zh. Obsch. Khim., 32, 2576,(1963).